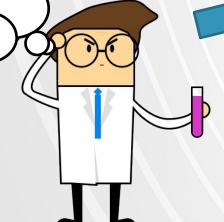


# Boosting the findability of data: a search engine for semantic concepts


José Manuel Domínguez







Data?



Federated FAIR Dataspace



Tumor tissue

Nucleotide sequence



#### Situation:

Two scientists work in the same domain, but it is difficult to provide data in a way that the others can find it easily.



#### **Solution:**

Somatic variant

calling

Federated FAIR Data Space

Datasets described with title, description and keywords (strings).



#### **Enhancement:**

Use concepts from

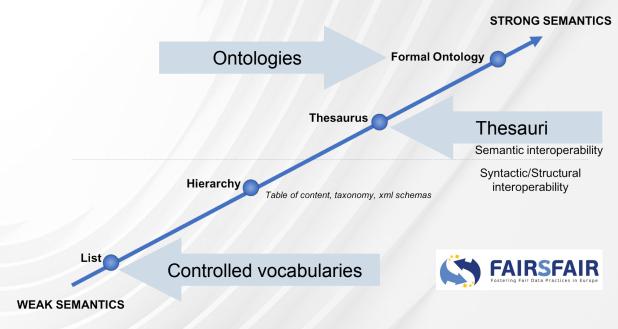
semantic artefacts.

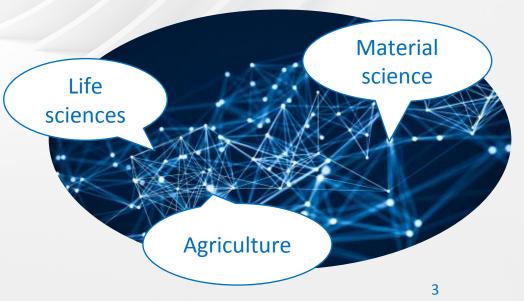
#### Problem:

Find suitable concepts from existing semantic artefacts.

EOSC-Pillar Task5.5

### Semantic artefacts


#### What are semantic artefacts?


- Machine readable models of knowledge
- "Expressivity" of the knowledge can vary

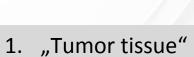
#### What are semantic artefacts needed for?

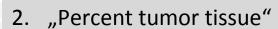
- Capture domain knowledge
- "Speak" the same language
- Enable interoperability

→ Use vocabulary from Semantic Artefacts to annotate datasets






# Solution: user's perspective




**"**Tum...









3. "Tumor tissue area"

4. ...



Somatic variant calling

Tumor tissue

Nucleotide sequence

Type the desired keyword in the search field

Search engine



The search engine will immediately provide as-you-type suggestions



Select desired result from list of best matching concepts

# Solution: engineering perspective

Landscape Analysis

**EOSC-OntoPortal** 

Find out which SAs are relevant for EOSC-Pillar UCs

Have all SAs accessible in repositories



Harvesting concepts

Harvesting concepts from the various repositories

#### Normalization

Common schema for concepts



#### Search engine

Build an index and develop a scoring mechanism



# Integration in F2DS

Integrate search engine in F2DS





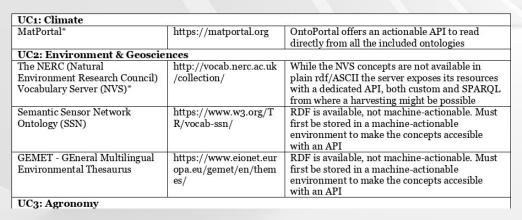
# Landscape Analysis

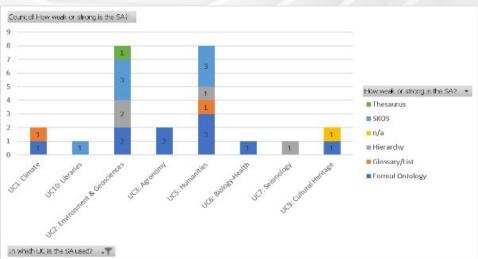
#### **Expert interviews**

- Explain the needs
- Collect semantic artifacts

# Define evaluation criteria

- **Machine-readability**
- **Availability in repositories**
- Licenses


#### Recommended SAs

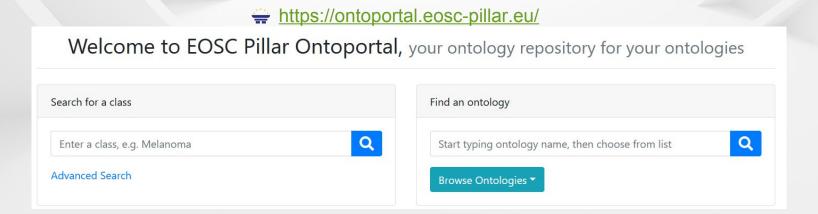

search index

### Recommend SAs to add to the

#### Evaluate semantic artifacts

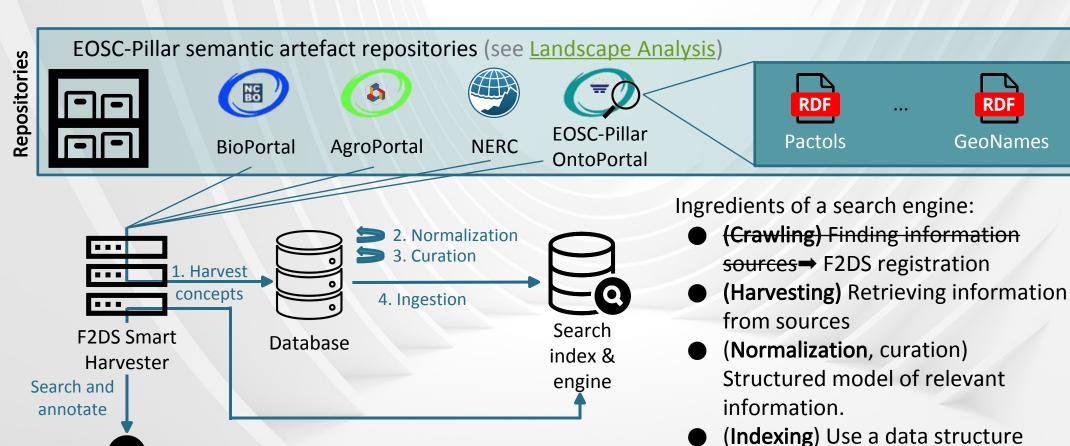
Evaluate semantic artifacts based on defined criteria






### **EOSC-Pillar OntoPortal**

- OntoPortal: a repository service based on BioPortal
  - Publish, search and store semantic artefacts



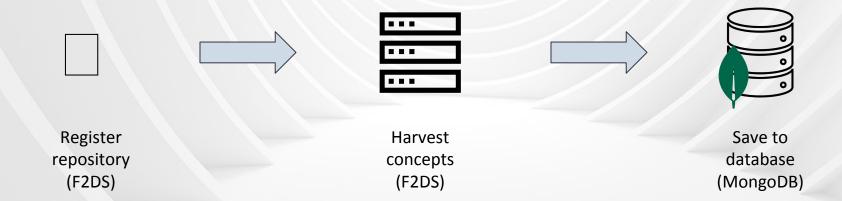

- EOSC OntoPortal a instance of OntoPortal
  - O Populated with semantic artifacts that are not in a machine actionable environment
  - O Status: > 60.000 concepts



# Search engine: architecture

F2DS Smart Harvester UI




optimized for fast retrieval.

(Ranking) A ranking algorithm.

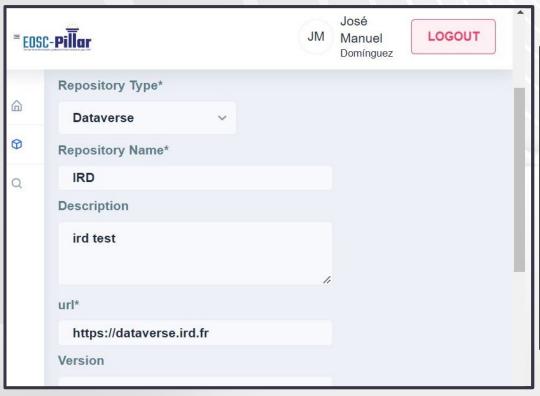
# Search engine: harvesting concepts

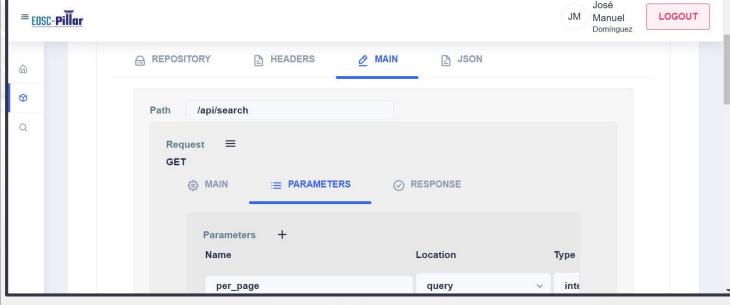
The F2DS Smart Harvester provides a graphical user interface to register concept repositories and retrieve their information.

(aimed at administrators)



# Search engine: harvesting concepts OpenAPI specification


```
{"openapi": "3.0.0",
 "info": {"title": "nerc", ..., "x-catalog-id": "1b0930f3-b0c5-415a-b5cb-2d612a70e873" },
"servers": [{"url": "http://vocab.nerc.ac.uk"}],
 "paths": {"/scheme":
  {"get": {"tags": ["dataset"], "summary": "",
   "<mark>parameters</mark>": [
     {"in": "query",
     "name": "_profile",
     "schema": {"type": "string", "default": "nvs"},
     "required": false,
     "description": ""},
     {...}
             "responses": {"200": {...}, ...}
```




Human and computer-readable specification for HTTP APIs.

# Search engine: harvesting concepts F2DS Registration

Graphical user interface for creating the API description





# Search engine: harvesting concepts Harvested concept

```
"repositoryId": "1b0930f3-b0c5-415a-b5cb-2d612a70e873",
 "url":
"http://vocab.nerc.ac.uk/collection/GS8/current? profile=nvs& mediatype=application/ld+json",
 "document": {
            "identifier": "SDN:GS8::PASR",
            "note": {"@value":"accepted", "@language":"en"},
      "@type":"skos:Concept",
                                                                                            ⚠ Different schema for
            "prefLabel":{"@value":"Passive seismic refraction", "@language":"en"},
                                                                                            each concept repository!
            "definition":{
            "@value": "The elucidation of geological structure by quantifying the refration of waves
from naturally occurring low frequency earth movements (e.g. earthquakes) by sub-surface layers .",
            "@language":"en"},
            "@id":"http://vocab.nerc.ac.uk/collection/GS8/current/PASR/",
            "dc:identifier": "SDN:GS8::PASR"
  class":"com.smartharvester.model.Ontologies"
```

# Search engine: normalization and curation

#### Goals:

Filter and structure information

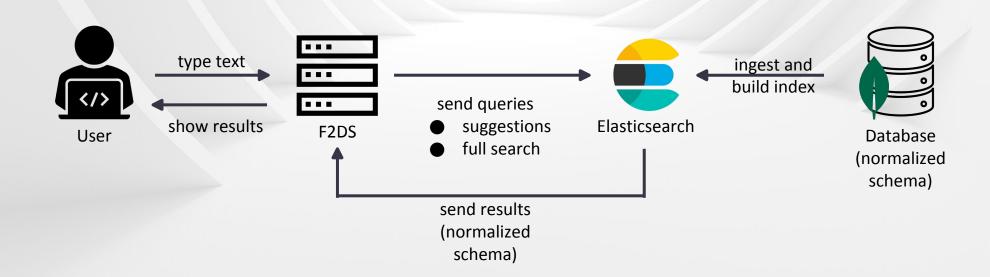


Enforce logical constraints (e.g. no deprecated concepts)

|                      | Normalization |                      | Curation |                                   | Get   | ogic in normalization:<br>ontology IRI<br>o resources separately |
|----------------------|---------------|----------------------|----------|-----------------------------------|-------|------------------------------------------------------------------|
| Different<br>schemas |               | Normalized<br>schema |          | Normalized<br>schema<br>(curated) | ☐ Dep | dated concepts<br>precated concepts<br>regation                  |

# Search engine: normalization and curation Normalized schema

### Adapted from previous work<sup>1</sup>


```
{"iri": "http://edamontology.org/data 0872",
"label": "Phylogenetic tree".
"description": "A phylogenetic tree is usually constructed from a set of sequences from which an alignment (or data
matrix) is calculated. See also 'Phylogenetic tree image'.",
"synonyms": ["Phylogeny"],
"domains":[],
"resource iri": "https://identifiers.org/ito:ontology".
"harvested from": "https://data.bioontology.org/ontologies/ITO",
"ui link"
"http://bioportal.bioontology.org/ontologies/ITO?p=classes&conceptid=http%3A%2F%2Fedamontology.org%2Fdata 087
 "resource name": "Intelligence Task Ontology",
 "resource acronym": "ITO",
 "resource date": "2022-01-13T00:00:00.000Z".
 "resource version": "1.01 (PWC export dated 2021-06-16)",
 "resources reusing": ["http://edamontology.org"],
 "resources reusing acronyms": ["EDAM"]
```

<sup>&</sup>lt;sup>1</sup> Goldfarb, Doron & Le Franc, Yann. (2017). Enhancing the Discoverability and Interoperability of Multi-disciplinary Semantic Repositories.

## Search index and engine

## Built using elasticsearch

- Data structures for very fast retrieval (index)
- Distributed architecture (several machines)
- Query language (select fields to be searched)
- Built-in scoring algorithms (give importance to each field)



# Search engine: integration into F2DS smart harvester

- Reuses the keywords of datasets to automatically search and assign concepts from semantic artefacts.
  - O Fine-tuning: suggestions can be discarded or a different result chosen.

Annotate with additional concepts if desired.



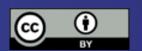


# Thank you!

# Get in touch with us!



www.eosc-pillar.eu




@EoscPillar



/company/eosc-pillar



